Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1997 Printed in Austria

Conversion of Yttrium-Aluminum Garnet to Soluble Forms as a Result of Mechanochemical Treatment

N. Minkova, A. Terziev, G. Tzvetkov, and D. Todorovsky

University of Sofia, Faculty of Chemistry, BG-1126 Sofia, Bulgaria

Summary. The changes in the solubility and in the phase composition of yttrium-aluminum garnet (*YAG*) as a result of its mechanochemical treatment for 2 h in a planetary ball mill together with H_3BO_3 and Na_2CO_3 (mole ratio $H_2BO_3/Na_2CO_3 = 4$) in ratios ($H_3BO_3 + Na_2CO_3$)/*YAG* = 2,4, and 9 are studied. At a ratio of 9, the yield of yttrium in the water solution obtained upon treatment of the activated mixture at 90 °C (50 cm³ water/g sample) reaches 85%. Its content in the same solution is above 93% relatively to the sum Y + Al.

Keywords. Mechanochemistry, Solubility; Yttrium-aluminum garnet.

Umwandlung von Yttrium-Aluminium-Granat in lösliche Formen durch mechanochemische Behandlung

Zusammenfassung. Die Änderungen bezüglich Löslichkeit und Phasenzusammensetzung von Yttrium-Aluminium-Granat (*YAG*) als Ergebnis einer zweistündigen mechanochemischen Behandlung in einer Kugelmühle zusammen mit H₃BO₃ und Na₂CO₃ (Molverhältnis H₃BO₃/Na₂CO₃ = 4) bei (H₃BO₃ + Na₂CO₃)/*YAG*-Verhältnissen von 2, 4 und 9 wurden untersucht. Bei einem Verhältnis von 9 erreicht die Ausbeute an Yttrium in der wäßrigen Lösung nach Behandlung der aktivierten Mischung bei 90 °C (50 cm³ H₂O pro Gramm) 85%. Relativ zur Summe Y + Al beträgt der Yttriumgehalt 93%.

Introduction

Yttrium-aluminum garnet (Y₃Al₅O₁₂, *YAG*), is a chemically very stable compound, practically insoluble in water and in most acids. The common method for its conversion into soluble forms is heating at *ca*. 1000°C with approx. 10 times greater amounts of Na₂B₄O₇·10H₂O or with a mixture of H₃BO₃ and Na₂CO₃. Treatment of the cooled melt with diluted HCl causes most of the Y and Al to pass into the solution. The dissolution of *YAG* in conc. HF at heating as well as in condensed phosphoric acid at ~ 320 °C has also been investigated [1]. The methods for acidic dissolution have been designed for analytical purposes and are hardly applicable for a treatment of *YAG* single crystals production wastes.

At the same time, our previous studies have shown that YAG is sensitive to a mechanical treatment. A comparatively short mechanoactivation in a planetary ball

mill causes a partial transformation of the cubic to the tetragonal form [2]. A more prolonged activation leads to mechanolysis of the tetragonal $Y_3Al_2O_{12}$ to $YAlO_3$ and Al_2O_3 [3].

The present paper concerns the mechanochemical effects in the system YAG-H₃BO₃-Na₂CO₃ and mainly conversion of YAG to forms soluble in H₂O and in HCl.

Results and Discussion

Mechanoactivation causes a radical change in the sample appearance – from powderlike it turns into a highly viscous (wax-like) mass. After 2–3 h in air it converts into a porous solid mass.

Fig. 1. X-ray powder diffractogram of a mechanoactivated mixture of $YAG-H_3BO_3-Na_2CO_3$ at $(H_3BO_3 + Na_2CO_3)/YAG = 9; 1: YAG, 2:$ tetragonal $Y_3Al_5O_{12}$, 3: H_3BO_3 , $4: Na_2CO_3$, $5: Na_2B_4O_7 \cdot 5H_2O$, $6: NaYO_2, x:$ unidentified component

Fig. 2. X-ray powder diffractograms of the residues after water treatment of mechanoactivated mixtures with $(H_3BO_3 + Na_2CO_3)/YAG = 2(1), 4(2), 9(3); 1: YAG, 2:$ tetragonal $Y_3Al_5O_{12}, 3: AlYO_3, 4: \gamma - Al_2O_3, x:$ not identified component

The X-ray powder diffractograms of the activated sample with a mass ratio R = 9 and residues after water treatment of activated samples (R = 2, 4, 9) are shown in Figs. 1 and 2.

The results on Y_2O_3 and Al_2O_3 leaching upon treatment of the activated samples with H₂O and HCl as well as directly with HCl are shown in Table 1. The mass ratio Y_2O_3/Al_2O_3 in YAG is 1.33. The values given in Table 1 are rather different and show that the ratios of Y and Al leaching depend on the YAG mechanolysis. The comparison of our results with the ones received for pure YAG, mechanoactivated and post-treated at the same conditions [3] (Table 1), show that the presence of the additives during the mechanoactivation causes an increase in leaching of both oxides in water and a significant decrease of their yield in HCl solution. The overall conversion of Al₂O₃ to soluble forms (evaluated from the results of direct HCl treatment) is lower than that for pure activated YAG in the entire studied interval of R. The influence of additives on Y_2O_3 leaching depends on the value of R. At R < 3, a decrease of the overall solubility is observed: above this value, solubility increases. At R = 9, the yield of Y₂O₃ in aqueous solution reaches 85%. The following treatment with HCl slightly increases this yield, but at the same time the Al_2O_3 content in the solution significantly increases, too. The latter product complicates the following separation of the two elements. From this point of view, the recycling of the residue at the beginning of the process (after treatment with H₂O) is more efficient than after HCl leaching. The separation of Y

Table 1. Leaching of Y i	and Al fro	m YAG, 1	nechanoac	tivated wi	th H ₃ BO ₃	and Na ₂ C(03						
Mass ratio	Conversi	ion in sol	ution (% r	elative to	the mass (of the treat	ed materia	al)		Compos	ition of th	e residue ((%)
	Y_2O_3		ļ	Al ₂ O ₃			Mass rat	tio Y ₂ O ₃ /.	Al ₂ O ₃	Y_2O_3		Al ₂ O ₃	
(H ₃ BO ₃ +Na ₂ CO ₃)/YAG	H ₂ O	HCI	HCl (directly)	H_2O	HCI	HCI (directly)	H ₂ O	HCI	HCI (directly)	H ₂ O	HCI	H ₂ O	HCI
2	15.37	1.59	16.72	1.74	8.19	9.79	8.83	0.19	1.71	53.37	55.08	46.63	44.91
4	37.02	2.97	38.89	3.08	15.75	18.34	12.02	0.19	2.12	46.34	49.84	53.66	50.16
6	85.19	13.26	87.15	8.87	12.44	17.58	14.51	1.07	4.96	17.28	17.13	82.72	82.87
Mechanoactivated pure YAG [3]	7.81	21.20	27.35	0.71	25.74	26.27	11.00	0.82	1.04	54.23	54.82	45.77	45.18

596

from the aqueous solution and its purification could be accomplished by the method proposed in Ref. [6].

The composition of the residues obtained after consecutive treatment of the samples with R = 2 or 4 with H₂O and HCl is close to that of Y₃Al₅O₁₂ (Table 1). Its reflexes are the only ones registrated in their diffractograms. The relative Al₂O₃ content in the residue from the sample with R = 9 is rather high, and its reflexes are observed in the respective diffractogram (Fig. 2).

A detailed clarification of the mechanochemical and post-treatment processes could not be achieved. The diffractometric study of the activated samples is rather complicated due to the polycomponent composition of the system, the close proximity of the interlayer distances of some of the components, and the great probability of formation of amorphous or metastable phases. The reflexes of the initial compounds (YAG, H₃BO₃, and Na₂CO₃) as well as those of some mechanochemically produced species (t-Y₃Al₅O₁₂ [2], Na₂B₄O₇·5H₂O, NaYO₂) are observed in the activated sample diffractogram (Fig. 1). The production of $Na_2B_4O_7 \cdot 5H_2O$ as well as the mechanolysis of Na_2CO_3 to Na_2O [5] are accompanied by a release of CO₂ and H₂O and explain the porous character of the activated sample. It may be expected that YAIO₃ and Al₂O₃ resulting from Y₃Al₅O₁₂ mechanolysis are present in the activated sample [3]. The diffractometric identification of YAIO₃ can hardly be achieved due to closeness of its interlayer distances with those of Y₃Al₅O₁₂. Nevertheless, the analysis of the relative intensities of the reflexes in the diffractograms of the water treated activated samples (Fig. 2) suggests the presence of $YAIO_3$ and, as was already mentioned, of Al₂O₃. However, it is probable that YAlO₃ suffers mechanolysis also, producing the respective oxides. Obviously, a rather complicated system is formed during the mechanoactivation which may give birth to numerous new products. Most of them, as the experimental results show, are water soluble. However, regardless of the nature of the processes taking place during mechanoactivation, the reported results show that the proposed method may be successfully used for Y recovery from YAG.

Experimental

The starting material (YAG) was the same as the one used in our previous investigations [2, 3] and represents a powder with a particle size of 0.070–0.063 mm, prepared by grinding YAG monocrystal wastes. The other reagents used were of p.a. grade.

Samples of *ca.* 15 g containing *YAG*, H₃BO₃, and Na₂CO₃ were mechanoactivated in a planetary ball mill Pulverisette 5 (Fritsch) in 250 cm³ agate vessels with agate balls of 4–20 mm in diameter and an overall mass of *ca.* 200 g for 2 h at 288 revolutions min⁻¹. The mole ratio H₃BO₃/Na₂CO₃ was 4, as the one required for Na₂B₄O₇ formation, and the mass ratio $R = (H_3BO_3 + Na_2CO_3)/YAG$ was 2, 4, and 9.

The mechanoactivated samples were treated with H_2O (50 cm³/g sample) and with 20% HCl (100 cm³/g sample) or directly with the same acid at 90 °C for 1 h at reflux and agitation with a magnetic stirrer. The suspensions were filtered through fine-porous filters ("blue band" and 0.45 µm). In the filtrates, Y^{3+} and Al^{3+} ions were determined complexometrically [4]. The composition of the residue was calculated as the difference to the initial material composition. In Table 1, the Y and Al content are represented as respective oxides percents.

The X-ray powder diffractograms of the activated samples and of the residues were taken by means of an automatic powder diffractometer (TUR-62M, Germany) at CuK_{α}, 40 kV, 40 mA, 0.9°/min.

Acknowledgements

This work was financially supported by the Sofia University Science Foundation.

References

- [1] Zolotovitskaya ES, Potapova VG (1984) Zh Anal Khim 39: 1781
- [2] Minkova N, Todorovsky D, Furdinova G, Oliver D, Enikov R (1994) Materials Chem Phys 38: 383
- [3] Minkova N, Tzvetkov G: Materials Chem Phys (submitted)
- [4] Schwartsenbach G, Flaschka G (1970) Kompleksometricheskoe titrovanie. Khimya, Moskva, pp 191, 195
- [5] Molchanov VI, Godreev VI (1971) Disotsiatsiay karbonatov v protsesse tonkogo izmel'chenya. SO AN SSSR, Novosibirsk, p 155
- [6] Minkova N, Todorovsky D, Ruseva A, Petrova A (1992) Bulg Chem Commun 25: 482

Received December 27, 1996. Accepted January 28, 1997